The FBI’s 2010 Hit of the Year: San Diego Police Dept.

On the right is a latent print taken from the San Diego crime scene. On the left, the fingerprint in the IAFIS database matched to the crime scene print by a San Diego Police Department latent print examiner.

San Diego Police Department (along with the Sarasota Police Department in Florida) was chosen by the FBI’s Criminal Justice Information Services Division (CJIS) to receive its “Hit of the Year” award.

January 1972. A man was murdered—stabbed more than 50 times in his San Diego, California home. His house had been ransacked, and his car was stolen. Police recovered latent fingerprints from the crime scene, but at that time there was no national automated system available to match the prints. All possible leads were followed, but the case eventually went cold.

The 2010 Hit of the Year recognized the 1972 San Diego case, which was reopened in 2008 by the San Diego Police Department. Latent prints collected from the victim’s house back in 1972 were submitted to IAFIS. The system came up with 20 possible matches. A San Diego Police Department latent print expert compared the matches with the crime scene latents and made an identification—an individual who had been previously tried and acquitted on murder charges in Texas. The suspect was located in Texas, and his prints were taken and compared to prints found on a cigarette lighter at the crime scene and in the victim’s recovered car. The case went to trial with the fingerprints and other evidence, including DNA. And even though the trial ended with a deadlocked jury, the defendant eventually pled guilty to the crime in order to avoid a second trial.

Key members of the team responsible for closing the case included lead Detective John Tefft (now retired), Crime Scene Specialist Dorie Savage, and Latent Print Examiner Gloria Pasqual. Congratulations on a job well done!

The reproducibility of third level fingerprint detail is important in personal identification. The effect of different substrates on the reproducibility of pore dimensions in inked reference fingerprints was investigated. Photomicrographs of inked reference prints were taken and their dimensions were measured using appropriate software. Results containing best third level detail were achieved by deposition onto a variety of non-absorbent substrates but intra-print variation makes these an unreliable source of reference prints. Results indicated that inked prints deposited onto paper substrates showed too great a variation to use pore shape reliably in personal identification. This study casts doubt on the use of pore shape as a reliable identification tool with inked reference prints.

Abstract

The reproducibility of third level fingerprint detail is important in personal identification. The effect of different substrates on the reproducibility of pore dimensions in inked reference fingerprints was investigated. Photomicrographs of inked reference prints were taken and their dimensions were measured using appropriate software. Results containing best third level detail were achieved by deposition onto a variety of non-absorbent substrates but intra-print variation makes these an unreliable source of reference prints. Results indicated that inked prints deposited onto paper substrates showed too great a variation to use pore shape reliably in personal identification. This study casts doubt on the use of pore shape as a reliable identification tool with inked reference prints.

Introduction

The removal of numerical standards in the use of fingerprint for personal identification (PI) in England and Wales in 2001 and subsequently in Scotland (Mulhern, 2006) has allowed fingerprint examiners greater flexibility in which features to use when making PI. In particular, the changes enabled features at third level detail to be used by fingerprint examiners in PI. Additionally in an influential review paper, Budowle et al (2006) state ‘examiners also use Level III features’ and so an examination of issues surrounding the use of level three detail is warranted. Underpinning the use of third level detail are some implicit assumptions. These include those assumptions that are made for first and second level detail that:

- every fingerprint detail is unique;
- every fingerprint detail is permanent.

This assumption has in some circles allowed fingerprint examiners to state that it is possible that a single detail could be enough to complete a PI (Wertheim, 2000). The uniqueness of detail on the surface of the hand needs investigation as outlined recently (Budowle, 2006). It should be recognised that whilst a feature such as a pore may be unique, the print of this is recorded as a two dimensional monochrome image in which some of the uniqueness may have been lost in the image capture process. Image capture of reference prints builds a database against which to compare prints recovered from crime scenes. Matching is normally achieved using pattern recognition software that utilises two dimensional array methodologies or Markov models to match second level details (Sclove, 1979).

There have been attempts to examine which of the third level features might be amenable to automated matching systems. Ashbaugh (1982) discussed the possibility of using relative pore location and shape to secure PI. He concluded that pore location had possibilities and derived a simple probabilistic model to identify threshold levels for the number of pore locations necessary to achieve individualisation in PI. This concept was explored further in a series of papers by Roddy and Stosz (1997, 1999) from a biometrics perspective. Their conclusions were that acceptable performance levels for pore location were achievable in PI.

The reproducibility of third level detail in reference prints is of key importance to the use of third level detail in PI. Budowle (2006) states, ‘some studies have assessed the accuracy of representation of the friction ridge detail on the finger using the image-capture systems that record reference prints (rolled inked prints, live scan, flat inked prints, etc.). However, there apparently is little or no published data addressing this assumption’. Work that examines the reproducibility of reference prints is therefore important.’

Locard (1912) utilised pore distribution to determine personal identity and court-tested the results of the work, establishing a legal precedent for the use of pore location in PI. In his work Locard also examined and classified the range of pore sizes measured by surface area and approximate shape, suggesting that these could be usable features in PI. Ashbaugh (1982) re-examined this, using the term “ridgeology” to encompass third level detail comparisons, and later suggested the features that can be examined at third level detail; including pore location, pore shape and ridge edge shape. Ashbaugh’s work stimulated the application of relative pore location in real casework, using manual matching procedures to achieve PI (Barclay, 1991; Clegg, 1994).

Ashbaugh (1982) suggested that the parameter of pore surface area was unreliable in personal identification, but presented no evidence to support this assertion. Pore area was re-examined by Roddy and Stosz (1997) and presented qualitatively in Table 5 in the paper. Their conclusions were that best inked impression should give accurate pore area representation but in latent and livescan prints pore size was an unreliable parameter to use. Data supporting these assertions do not appear to have been presented. The reliability or otherwise of reference prints has been identified by Budowle (2006) in the list of priority project as stated, ‘Assess accuracy of representation of the friction ridge detail on the finger when using the image-capture systems that record reference prints.’ Uncertainty about pore size and lack of published data in this area means that the reliability of pore size in reference prints is worthy of further consideration. In this paper we examine the reliability of pore size as a tool in PI using photomicrographic images of inked reference prints.

Material & Methods

The present study examines the reproducibility of pore details in inked prints on different substrates. Prints were collected by inking the finger from a 15cm x 10cm glass plate, evenly inked with two drops of black fingerprint ink (Reeves, Harrow, England); each drop being approximately 2.5mm x 2.5mm. Different types of papers were used to deposit both plain and rolled fingerprints. Print deposition was tried at different pressures, judged qualitatively as low, medium, and high. The prints deposited with medium pressure revealed more detail and were selected for further study, whereas both the high and low pressure prints had detail obscured by under or over inking. These prints were then microscopically examined.
Using 40x magnification, to study the reproducibility of pore shape and to investigate different substrates. In this task, a variety of papers from different manufacturers, a range of plastic transparencies with variable surface textures and different types of glass surfaces were used. Glass plates were thoroughly washed using standard glassware washing procedure before print deposition and new glass slides used to collect the prints were cleaned with 95% alcohol. The properties of paper investigated in study included: weight (grams per square metre) and surface texture (glossy and non-glossy papers). The types of paper used were: 80 gsm white, copier laser jet paper; 90 gsm laser paper; 160 gsm laser jet paste (Hewlett-Packard, USA); 160 gsm ‘pulp- board’ paper; 260 gsm matt inkjet paper; 106 lb 100% cotton, acid free paper (Strathmore Paper Mill, Franklin), calculated to be 224 gsm; 260 gsm gloss, ink jet paper (Jessops Photo, The Jessops Group Ltd, England); invoice paper with smooth texture and the paper used for the National Fingerprint Form. Prints taken on the glass plates and slides were immediately photographed to avoid any smearing of the prints but prints collected on transparencies were left to dry completely (2 days at room temperature) before photography.

From all the prints on different types of surfaces, some pores from the right thumb and left index were randomly selected and photographed for further investigation. In all further investigation, only these specific pores were considered. Photomicrographs were recorded using a Nikon ‘Eclipse’ ME600 microscope (Nikon Corp., Tokyo, Japan) using a SPOT RT colour camera (with integral software Version 4.02) manufactured by Diagnostic Instruments Inc., Michigan, USA. Photographs were analysed using Image Pro Plus (Version 4.5) manufactured by Media Cybernetics Inc., Maryland, USA, using 4x objective (40x magnification) and were stored as “.tif” files, so that there was no information loss. Details studied in the prints were: shape of the pores, size of the pores and the effect of the substrate. Pore measurements were carried out by taking best fit of the pore to a circle. An example of this is shown in figure 1. In case of the irregular shaped pores, the area was measured by drawing the circle, which touches at least three sides of the pore. Area estimates of all irregular pores were made using this method.

The measurements were carried out in different stages. Firstly, selected pores were measured 10 times in the same print on the same substrate at the same time, to determine the precision of the measurement method. This step was repeated measuring four more pores (Table 1). Secondly, different prints of the same digit were placed onto a selected substrate during a single session to allow the same selected pore to be measured in each of the different prints, for study of the reproducibility of pore shape on same substrate (Table 2). Further, the second stage was repeated by considering five more different pores in different prints but on same substrates (Table 3). Thirdly, a pore was selected and this pore was measured ten times each in four prints on the same substrate, the mean of means was recorded and this was repeated exactly on nine other, different substrates (Table 4). Data were further analysed using the statistical software package SPSS, version 10 for Windows (SPSS, Chicago, USA).

Results and Discussions

Table 1. Mean surface area and % coefficient of variance (% C.V) of five pores (C1 – C5) measured ten times as described in the materials and methods using a print deposited on 260 gsm glossy paper.

<table>
<thead>
<tr>
<th>Pore</th>
<th>Mean Area (µm²)</th>
<th>%C.V</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>10634.7</td>
<td>1.5E-06</td>
</tr>
<tr>
<td>C2</td>
<td>5933.2</td>
<td>2.6</td>
</tr>
<tr>
<td>C3</td>
<td>5737.9</td>
<td>4.5</td>
</tr>
<tr>
<td>C4</td>
<td>4154.2</td>
<td>1.39E-06</td>
</tr>
<tr>
<td>C5</td>
<td>7130.6</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Table 1. shows the results of the first stage of the experimental approach. In this experiment, the C1 pore was measured ten times in the chosen print on 260gsm glossy paper. Mean area was calculated and used to calculate %C.V. This was repeated for pores C2 – C5 in the same chosen print. These measurements were taken to determine whether the measurement method introduced variability into the data collected. The % coefficient of variance (%C.V) measures the variability in the data during a set of individual measurements. Calculating the % C.V allows a comparison of the standard deviation to the mean. In all cases the % C.V for ten measurements was less than 5%. The method employed to determine the size of the pores is within acceptable levels of precision.

Table 2. Summary of mean surface area measured ten times and % coefficient of variance (% C.V) of pore (C1) in four prints deposited on 160 gsm , hp laser jet paper.

<table>
<thead>
<tr>
<th>Pore</th>
<th>Print</th>
<th>Mean Area (µm²)</th>
<th>%C.V</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1</td>
<td>12081.4</td>
<td>4.3</td>
</tr>
<tr>
<td>C1</td>
<td>2</td>
<td>3830.1</td>
<td>4.4</td>
</tr>
<tr>
<td>C1</td>
<td>3</td>
<td>6702.7</td>
<td>4.1</td>
</tr>
<tr>
<td>C1</td>
<td>4</td>
<td>10111.2</td>
<td>2.7</td>
</tr>
</tbody>
</table>

The results of the precision of the measurement method when applied to a single pore from different prints is shown in Table 2. Repeated measurements were made of pore C1 from four different prints deposited on a single paper type. The results show that %C.V lies well within the acceptable range showing that large variations do not arise from the method of measurement.

A preliminary examination of the actual area measurements in Table 2 indicates that there is a large amount of discrepancy between the surface area measured in each individual print. The surface area varied in four prints between 3830 – 12081 µm². This variation was found to be typical for a number of pores investigated.

(Continued on next page)
Table 3. Summary of the mean areas (µm²) and % coefficient of variance (% C.V) of pores C1 – C6 measured in different prints deposited on 160 gsm, hp laserjet paper.

<table>
<thead>
<tr>
<th>Print</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
<th>C6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12081.4</td>
<td>8142.2</td>
<td>13459.5</td>
<td>5026.5</td>
<td>4494.8</td>
<td>9917.0</td>
</tr>
<tr>
<td>2</td>
<td>3830.1</td>
<td>9576.9</td>
<td>1951.1</td>
<td>4981.9</td>
<td>4154.2</td>
<td>5982.0</td>
</tr>
<tr>
<td>3</td>
<td>6702.7</td>
<td>4328.6</td>
<td>11309.7</td>
<td>4564.3</td>
<td>4579.9</td>
<td>5493.9</td>
</tr>
<tr>
<td>4</td>
<td>10111.2</td>
<td>4624.6</td>
<td>12722.1</td>
<td>3749.1</td>
<td>5982.0</td>
<td>11309.7</td>
</tr>
<tr>
<td>%C.V</td>
<td>44.7</td>
<td>38.9</td>
<td>54.2</td>
<td>12.9</td>
<td>16.8</td>
<td>35.2</td>
</tr>
</tbody>
</table>

A more thorough examination of interprint variation of pore area is shown in table 3. The C1 pore was measured ten times in print 1 and mean was calculated. This step was repeated to calculate mean area in prints 2, 3 and 4. Mean of mean area in these four prints was calculated to obtain % C.V for C1 pore. Similarly %C.V was calculated for pore C2 to C6.

Table 4: Summary of pore C1 measured in impressions deposited on ten different types of papers and transparencies, (1) 160 g/m² ‘pulp-board’ paper (2) 260 gsm matt inkjet paper (3) 80 gsm, copier laser jet paper (4) 260 gsm gloss, ink jet paper (5) 160 gsm, laser jet paper (6) invoice paper with smooth texture (Unknown details) (7) 90 gsm, laser paper (8) 106 lb 100% cotton, acid free paper (9) paper used for the National Fingerprint Form (10) Transparency sheet.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Pore</th>
<th>Mean of Mean Area (µm²)</th>
<th>%C.V of Means</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C1</td>
<td>1610.9</td>
<td>32.3</td>
</tr>
<tr>
<td>2</td>
<td>C1</td>
<td>7466.8</td>
<td>72.7</td>
</tr>
<tr>
<td>3</td>
<td>C1</td>
<td>6212.0</td>
<td>35.5</td>
</tr>
<tr>
<td>4</td>
<td>C1</td>
<td>5694.7</td>
<td>28.2</td>
</tr>
<tr>
<td>5</td>
<td>C1</td>
<td>8181.4</td>
<td>44.7</td>
</tr>
<tr>
<td>6</td>
<td>C1</td>
<td>5851.7</td>
<td>30.8</td>
</tr>
<tr>
<td>7</td>
<td>C1</td>
<td>9348.2</td>
<td>41.4</td>
</tr>
<tr>
<td>8</td>
<td>C1</td>
<td>7058.9</td>
<td>71.7</td>
</tr>
<tr>
<td>9</td>
<td>C1</td>
<td>1064.1</td>
<td>80.8</td>
</tr>
<tr>
<td>10</td>
<td>C1</td>
<td>5206.7</td>
<td>31.4</td>
</tr>
</tbody>
</table>

The variation of pore area when prints were deposited on different types of substrates was investigated. C1 pore was measured ten times in one print on paper 1 and mean area was calculated. Likewise, C1 pore was measured ten times each in 3 more prints on paper 1 and mean area for each print was calculated. The mean of mean area in these four prints was used to obtain %C.V for C1 pore on paper 1. Similarly %C.V was calculated for 9 other substrates.

The results clearly show that the % C.V is outside normal acceptable levels, which puts the size and shape of pore in doubt as a reliable tool in personal identification (Table 4).

Statistical Analysis of Data

Table 5: Summary of results obtained using ANOVA.

<table>
<thead>
<tr>
<th></th>
<th>Sum of Squares</th>
<th>Df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>1.626</td>
<td>9</td>
<td>0.181</td>
<td>3.528</td>
<td>0.004</td>
</tr>
<tr>
<td>Within Groups</td>
<td>1.536</td>
<td>30</td>
<td>5.120E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3.162</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Further statistical analysis was performed on the data using SPSS. Before analysis, data sets were tested for Normality and Homogeneity of Variance using Kolmogorov-Smirnov test (K-S test) and Levene’s test respectively, to determine if they met the criteria for ANOVA. Using the K-S test, the value is 0.663, which is well above the critical 0.05 proving that the data is normally distributed. One-way analysis of variance was applied using Log10 of the mean of the area as the dependent variable and the results are presented in Table 5. This showed that the pore size on 10 different papers was significantly different (F9,30 = 3.528, P<0.01). The results showed that in no surface used, which included the National Fingerprint Forms, to collect prints to study third level details can be used as a reliable substrate for the measurement of surface area in inked prints.

Observations

Figure 2: Prints of Right thumb. (a) print on glossy paper (b) print on matt paper (c) print on transparency. These prints were photomicrographed at 40x magnification as described in the methods.
The study shows that some surfaces are better than others for third level detail study. Nonabsorbent surfaces like glossy papers, transparencies and glass slides (figure 2a and 2c) prove to reveal more third level detail than non-glossy papers (figure 2b). Absorbent surfaces show fibre distortion resulting in the change of pore shape. There is noticeably more fibre distortion in some absorbent papers (figure 3b) than others (figure 3c, 3d and 3e). There is no fibre distortion recorded in non-absorbent glossy surfaces but this doesn’t prove that glossy surfaces are best. The problem of gooping of ink has been recorded on non-absorbent surface, which distorts the shape of pores. This may be a factor in the usefulness of features reproduced in these images.

Conclusions
The experimental results address the question of whether pore surface area is a reliable tool to use in PI when using inked reference prints. The results showed that the system for estimation of surface area was subject to little variation and so bias cannot be introduced into the data by the surface area measurement method. Examination of replicates of individual pores from inked prints deposited onto a single paper by the surface area measurement method. In addition if it could be established that any scene development methods give reproducible estimates of pore surface area measurements, then limited application of pore surface area (and pore shape by extrapolation) may be acceptable for use in identification. It is our intention to investigate the reproducibility of pore area in latent prints developed by a variety of different techniques.

Acknowledgement
We would like to thank staff within the PITO biometrics and fingerprint divisions for reading and commenting on a preprint of the manuscript. Mr. A. Gupta is grateful to the University of Wolverhampton International Excellence Scholarship Fund for continued support. Mr. A. Gupta would like to thank Dr. Neeti Gupta, Dr. A. McCrea and Dr. M. Inman for their help and valuable advice.

References

The Print
The Official Publication of S.C.A.F.O.
Hello everyone,

As 2010 comes to a close and we are all running around preparing for the holidays, I wish you a great Thanksgiving and Christmas, and hope for a safe and fun New Years. I don’t know about you, but 2010 zoomed by so fast I still haven’t caught my breath.

With this being my last letter to you as your President I wanted to tell you what a pleasure it was to serve the SCAFO membership as President. The seminar was a great success and I hope you got a lot out of the speakers. The 2011 seminar in October will be just as great.

By the time you get the “Print” the last meeting of the year will have taken place and you will have a new Executive Board. I’m confident that the 2011 board will do the membership proud. Please give some thought into running for the 2012 Executive Board.

Being part of the board has been a great experience for me as I have met and talked to a lot of people over the 6 years that I have been on the board. I have to say I think the most rewarding position I got to serve in was the Secretary. I was able to talk with the membership and put faces to names. I hope to keep at least a foot in the door and still serve the membership in some way.

Being part of a professional membership organization keeps you informed as to what is going on in our world and you need to stay on top of the news, so to say. I think SCAFO is one of the best organizations you can be a part of. How many other organizations come together six times a year? Even if all we did is get together and talk to each other about our experiences, good or bad, that would be beneficial. However, we do more than that. We bring people in to talk to us about real cases.

So as a final thought “Our organization is only as good as the participation from the board and the members”. If you have ideas on subjects we, as a profession, need to know about please tell us and hopefully we can make it happen.

So until next year, be safe.

Sincerely,

Mari Johnson,
SCAFO President

MINUTES OF AUGUST MEETING

DATE: Saturday, August 7th, 2010
LOCATION: Airport Hilton, 700 N. Haven Ave., Ontario, CA
HOST(S): 19th Annual SCAFO Seminar
SECRETARY: Cynthia S. Fortier
PROGRAM: Seminar
CALL TO ORDER: General meeting at 1140 hrs. by Mari Johnson
PLEDGE OF ALLEGIANCE led by Jim Lawson

ATTENDANCE
PAST PRESIDENTS (Present):
- Bob Goss (2001), Steve Tillman (2002), Dennis Uyeda (2005),
- Susan Garcia (2007), Amy Hines (2009)

EXECUTIVE BOARD (Present):
- Mari Johnson, Debbie Stivers, Lisa Jackson, Cynthia Fortier, Mark Waldo,
- Anne Carlson, Tony Nguyen, Linda Rodiguez

EXECUTIVE BOARD (Absent): Cindee Lazano
Members and guests present: 76

OLD BUSINESS
Second Reading:
- Erika DiPalma (Los Angeles Co. Sheriff's Dept. / Latent Prints)
- Joel Rivlin (Santa Barbara Sheriff's Dept. / Forensic Unit)

Motion to Accept: Wayne Plumtree
Second by Alan McRoberts

Swear Ins:
- by Clark Fogg

New Members: Tedde Stephan (West Covina PD)

NEW BUSINESS
First Reading:
- Krishna Patel (Culver City PD) - Recommended by Joi Dickerson
- Teresa Mendoza (Culver City PD) - Recommended by Joi Dickerson.

Other:
- Motion to Accept Meeting Notes in “The Print”: Susan Garcia
 Second by Bob Goss

ANNOUNCEMENTS
- Election of the 2011 SCAFO Executive Board will take place at the October 2nd, 2010 Meeting.
- Active Members who are without their name badges at the meetings will be fined $1.00.
- 2012 will be the 75th Anniversary of SCAFO and a special event will be planned.

NEXT MEETING
Saturday, October 2nd, 2010 at 1130 hrs.
Pomona Mining Co. - 1777 Gillette Rd., Pomona, CA 91768

MOTION TO ADJOURN
Motion by Bob Goss
Second by Debbie Stivers
Meeting adjourned at 1200 hrs.
MINUTES OF OCTOBER MEETING

DATE: Saturday, October 2nd, 2010
LOCATION: Pomona Valley Mining Co, 1777 Gillette Rd., Pomona, CA
HOST(S): Mark Waldo (Santa Ana PD)
SECRETARY: Cynthia S. Fortier
PROGRAM: Homicide Investigation of Jasmine Fiore - Buena Park PD
CALL TO ORDER: SCAFO meeting at 1460 hrs. by Mari Johnson
PLEDGE OF ALLEGIANCE led by Dell Freeman

ATTENDANCE

PAST PRESIDENTS (Present):
Dell Freeman (1973), Amy Hines (2009)

EXECUTIVE BOARD (Present):
Mari Johnson, Lisa Jackson, Cynthia Fortier, Mark Waldo,
Tony Nguyen, Linda Rodguez, Cindee Lazano

EXECUTIVE BOARD (Absent):
Debbie Stivers , Bob Goss, Anne Carlson
Members and guests present: 50

OLD BUSINESS
Second Reading:
Martin Briano (Santa Ana PD)
Krishna Patel (Culver City PD)
Malanie Walchek (Los Angeles Co Sheriff’s Dept.)

NEW BUSINESS
First Reading:
Reyna Shelton (San Diego Co Sheriff’s Dept) -
Recommended by Leah Hogue
Adam MacDonald (Pomona PD) -
Recommended by Sheri Orellana.

Other:
• 2011 Executive Board Election Ballots were given out. The results
were as follows:
President - Debbie Stivers,
1st Vice President - Lisa Jackson,
2nd Vice President - Cynthia Fortier,
Secretary - Amy Hines,
Sergeant of Arms - Mark Waldo,
Treasurer - Cindee Lazano,
Directors - Tony Nguyen, Linda Rodguez, Sheri Orellana, Josie Mejia

ANNOUNCEMENTS
• Installation of SCAFO Executive Board 2011 will take place at the next
training / business meeting - Saturday, December 4th, 2010/

ATTENDANCE DRAWING
$25.00 Won By: Josie Mejia

DOOR PRIZES PROVIDED
by Mark Waldo.

NEXT MEETING
Saturday, December 4th, 2010 at 1130 hrs.
Magic Lamp Inn, 8189 Foothill Blvd., Rancho Cucamonga, CA 91730

MOTION TO ADJOURN
Motion by Sheri Orellana
Second by Lisa Jackson
Meeting adjourned at 1510 hrs.

“Every man owes a part of his time and money to the business or industry in which he is engaged. No man has a moral right to withhold his support from an organization that is striving to improve conditions within his sphere.”

- President Theodore Roosevelt, 1908

For subscription or membership information, or address corrections contact:

S.C.A.F.O. Amy Hines, Secretary
30755-D Auld Road ,
3rd Floor Rm, 3221,
Murrieta, Ca 92563
althines@rivcoda.org
$25.00 yearly subscription (attendance required for membership)
$35.00 yearly for International Subscriptions

C.S.D.I.A.I. Russ Silcoek, Secretary-Treasurer
P.O. Box 10
Roseville, CA 95678-0010
(916) 508-3518
russ-csdiaisecretary@comcast.net
$35.00 yearly membership

I.A.I. Joe Polski, Chief Operations Officer
2535 Pilot Knob Road, Suite 117
Mendota Heights, MN 55120-1120
(651) 681-8566 iaisecty@theiai.org
$60.00 yearly membership
MINUTES OF DECEMBER MEETING

DATE: Saturday, December 4th, 2010
LOCATION: Magic Lamp Inn, 8199 Foothill Blvd., Rancho Cucamonga, CA
HOST(S): Clarence Bales / Debbie Stivers
SECRETARY: Cynthia S. Fortier
PROGRAM: Cois Byrd (Former Riverside Co Sheriff’s Dept.)
“Law Enforcement - A Look at Our Past”
CALL TO ORDER: SCAFO meeting at 1400 hrs. by Mari Johnson
PLEDGE OF ALLEGANCE led by Dell Freeman

ATTENDANCE
PAST PRESIDENTS (Present):
Dell Freeman (1973), Bob Goss (2001), Amy Hines (2009)
EXECUTIVE BOARD (Present): All board members were present
EXECUTIVE BOARD (Absent): None

MEMBERS AND GUESTS PRESENT: 37

OLD BUSINESS
Swear Ins:
Bob Goss swore in the new 2011 SCAFO Executive Board.
Amy Hines swore in Bob Goss as the 2011 Parliamentarian.
Other:
• Mari Johnson presented Debbie Stivers with the 2011 President’s Gavel.
• Debbie Stivers presented Mari Johnson with her President’s Plaque and Past President’s Badge.

NEW BUSINESS
First Reading:
Julie Ott (Glendale PD) - Recommended by Debbie Stivers.
Katie Dupras (San Diego PD) - Recommended by Nick Burman.

ANNOUNCEMENTS
• A moment of silence was given in remembrance of the death of life member: “Daniel H. Miligan”. He has been a member since 1970. He was a member of the Los Angeles County Sheriff’s Department and passed away August 4th, 2010.
• Joi Dickerson won the 2010 Membership drive.
• Welcome new members Angela Jorge, Krisha Patel and Melanie Walchek.

ATTENDANCE DRAWING
$25.00 Won By: Rebekah Ford

DOOR PRIZES PROVIDED
by Mark Waldo, Cindee Lazano, Mari Johnson, Rebekah Ford, Debbie Stivers

NEXT MEETING
Saturday, January 8th, 2010 at 0900 hrs.
Denny’s, 3370 Grand Ave, Chino Hills, CA

MOTION TO ADJOURN
Motion by Cynthia Fortier
Second by Cindee Lazano
Meeting adjourned at 1445 hrs.

In This Issue
pg.
1 The FBI’s 2010 Hit of the Year San Diego Police Dept.
2 The Effect of Substrate on the Reproducibility of Inked Fingerprint Pore Dimensions Examined Using Photomicrography
6 Presidents Message
6 Minutes of August Meeting
7 Minutes of October Meeting
8 Minutes of December Meeting

--- Upcoming Events/Schools/Seminars---

February 5th, 2011
S.C.A.F.O Meetings
Jagerhaus Restaurant
2525 East Ball Road and 57 Fwy
Anaheim, California
(714) 520-9500

April 6th, 2011
AFIS User Group Meeting
LASD Record & Identification Bureau, #400
12440 E. Imperial Hwy,
Norwalk, California

April 10 - 14, 2011
8th Annual Advanced DNA Technical Workshop - West
Hilton San Diego Bayfront, San Diego, California

May 16 - 20, 2011
California State Division of the IAI Educational Conference
Marriott Napa Valley Hotel and Spa
Napa, California

August 7 - 13, 2011
International Association for Identification Educational Conference
Milwaukee, Wisconsin

Southern California Association of Fingerprint Officers
An Association for Scientific Investigation and Identification Since 1937